71M6533- DB Demo Board User’s Manual
1.9
CALIBRATION PARAMETERS
1.9.1 GENERAL CALIBRATION PROCEDURE
Any calibration method can be used with the 71M6533 chips. This Demo Board User’s Manual presen ts
calibration methods with three or five measurements as recommended methods, because they work with most
manual calibration systems based on counting "pulses" (emitted by LEDs on the meter).
Naturally, a meter in mass production will be equipped with special calibration code offering capabilities beyond
those of the Demo Code. It is basically possible to calibrate using voltage and current readings, with or without
pulses involved. For this purpose, the MPU Demo Code can be modified to display averaged voltage and
current values (as opposed to momentary values). Also, automated calibration equipment can communicate
with the Demo Boards via the serial interface and extract voltage and current readings. This is possible even
with the unmodified Demo Code.
Complete calibration procedures are given in section 2.2 of this manual.
Regardless of the calibration procedure used, parameters (calibration factors) will result that will have to be
applied to the 71M6533 chip in order to make the chip apply the modified gains and phase shifts necessary for
accurate operation. Table 1-2 shows the names of the calibration factors, their function, and their location in the
CE RAM.
Again, the command line interface can be used to store the calibration factors in their respective CE RAM
addresses. For example, the command
>]10=+16302
stores the decimal value 16302 in the CE RAM location controlling the gain of the current channel ( CAL_IA ) for
phase A.
The command
>]11=4005
stores the hexadecimal value 0x4005 (decimal 16389) in the CE RAM location controlling the gain of the
voltage channel for phase A ( CAL_VA ).
CE
Constant
CAL_VA
CAL_VB
CAL_VC
CAL_IA
CAL_IB
CAL_IC
PHADJ_A
PHADJ_B
PHADJ_C
Address
(hex)
0x11
0x13
0x15
0x10
0x12
0x14
0x18
0x19
0x1A
Description
Adjusts the gain of the voltage channels. +16384 is the typical value. The
gain is directly proportional to the CAL parameter. Allowed range is 0 to
32767. If the gain is 1% slow, CAL should be increased by 1%.
Adjusts the gain of the current channels. +16384 is the typical value. The
gain is directly proportional to the CAL parameter. Allowed range is 0 to
32767. If the gain is 1% slow, CAL should be increased by 1%.
This constant controls the CT phase compensation. No compensation
occurs when PHADJ=0. As PHADJ is increased, more compensation is
introduced.
Table 1-2: CE RAM Locations for Calibration Constants
Page: 23 of 75
`
REV 3
相关PDF资料
71M6534H-DB BOARD DEMO 71M6534H
71M6541F-DB DEMO BOARD 71M6541F
71M6543F-DB-CT DEMO BOARD 71M6543F-DB-CT
72-CNV-5 CONVERTER RS-232 TO RS-422 5V
72346-001 72346-1-SCA-II REC
72347-001LF CONN RECEPT SCA2 20POS VERT PCB
72436-001LF 80POS EXT HT. REC SCA-2
72442-201LF CONN RECEPT SCA2 80POS VERT PCB
相关代理商/技术参数
71M6533G 制造商:MAXIM 制造商全称:Maxim Integrated Products 功能描述:Exceeds IEC 62053/ANSI C12.20 Standards
71M6533G-IGTR/F 功能描述:计量片上系统 - SoC AC Power Monitoring SoC-Programd RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel
71M6533H 制造商:TERIDIAN 制造商全称:TERIDIAN 功能描述:Energy Meter IC
71M6533H-IEL 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IEL/F 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IELR 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IELR/F 制造商:Maxim Integrated Products 功能描述:Metering Systems on a Chip - SoC Precision Energy Meter IC
71M6533H-IGT/F 功能描述:计量片上系统 - SoC Precision Energy Meter IC RoHS:否 制造商:Maxim Integrated 核心:80515 MPU 处理器系列:71M6511 类型:Metering SoC 最大时钟频率:70 Hz 程序存储器大小:64 KB 数据 RAM 大小:7 KB 接口类型:UART 可编程输入/输出端数量:12 片上 ADC: 安装风格:SMD/SMT 封装 / 箱体:LQFP-64 封装:Reel